OPTISCH AKTIVE β (AMINO) ETHYL-PHOSPHONSÄUREESTER, β (AMINO) ETHYL-PHENYLPHOSPHINSÄUREESTER, β (AMINO) ETHYL-DIPHENYL-PHOSPHINOXIDE UND β (AMINO) ETHYL-DIPHENYLPHOSPHINE

Von G. Märkl^{*} und B. Merkl Institut für Organische Chemie der Universität Regensburg

Summary: The title compounds are prepared by Michael-type additions of primary and secondary amines to P(O)-activated vinylsystems resp. diphenyl-vinylphosphine.

Optisch aktive β (Amino) ethyl-phosphine $(\underline{8})$ mit den optisch aktiven Zentren in den Seitenketten R^1 oder R^2 , die als didentate Co-Katalysatoren in der asymmetrischen Synthese mit Hilfe von Übergangsmetallkomplexen von Interesse sind, wurden bislang nicht dargestellt.

Eine Ausweitung der Synthese der (N,N-Diethylamino)ethyl-phosphine nach K. Issleib durch Umsetzung der Kaliumsalze sekundärer aromatischer und aliphatischer Phosphine mit β -Bromethyl-diethylamin scheitert an der Schwerzugänglichkeit der β -Bromethylamine, insbesondere auch optisch aktiver Amine.

Die einzige allgemeine Synthese von $\beta(\text{Amino})$ ethyl-phosphonsäureestern $(\underline{4})$ -phenylphosphinsäureestern $(\underline{5})$ und -diphenylphosphinoxiden $(\underline{6})$ stellt die Michael-artige Addition primärer und sekundärer Amine an Vinylphosphonsäureester $\underline{1}$, Phenyl-vinylphosphinsäureester $\underline{2}$ und Diphenyl-vinylphosphinoxid $\underline{3}$ dar:

Nichtkatalysierte, basen- und säurekatalysierte Additionen von einfachen Aminen (Piperidin, Morpholin, Dimethylamin) an $\underline{1}$, an Methyl-vinylphosphinsäurebutylester, an $\underline{3}$ und an Dibutyl-vinylphosphinoxid wurden von A. Burger $\underline{2}$), A.N. Pudovik $\underline{3}$) und M.I. Kabachnik $\underline{4}$) beschrieben.

Wir konnten nunmehr zeigen, daß die Addition primärer Amine 1-3 von deren pK_B -Werten abhängig ist. Amine mit pK_B -Werten < 3.0 (Piperidin (2.84); Pyrrolidin (2.92); Dimethylamin (2.80)) gehen rein thermisch die Michael-Addition ein, während Amine mit pK_B -Werten > 3.0 (primäre Amine, z. B. Cyclohexylamin, 1-Phenyl-ethylamin und aromatische Amine, z. B. Anilin, N-Methylanilin) weder thermisch noch basenkatalysiert an 1-3 addieren. Die von Kabachnik beobachtete Strukturabhängigkeit der Reaktivität (Vinylphosphonsäureester > Vinylphosphinsäureester > Vinylphosphinoxide) konnte hierbei nicht bestätigt werden.

Analog den glatt verlaufenden, thermischen Additionen von Pyrrolidin an 1-3 gelingt die Darstellung der optisch aktiven Addukte 4a-6a mit L(+)-Prolinol (farbloses, viskoses öl, $[\alpha]_D^{25}=+28.4^{\circ}$, c=0.09 g/ 10 ml Methanol), das aus L-(-)Prolin ($[\alpha]_D^{25}=-82^{\circ}$, c=0.4 g/10 ml Wasser) mit LiAlH $_4$ erhalten wird $^{5)}$. Die optisch aktiven ß(Amino)ethylphosphon- und phosphin-säureester werden als farblose, viskose, im Hochvakuum destillierbare öle, die Phosphinoxide als farblose, kristalline Produkte erhalten.

$$R^{1} \stackrel{0}{\underset{P}{\downarrow}} - CH_{2}CH_{2} - N \qquad 4a - 6a$$

Verb. a)	Ausb.	Sdp. [°C] / 0.01 Torr b)	[α] ²⁵ D	MS (CH5, 70 eV) (rel. Int.)
<u>4a</u>	70	120 - 130		M^{+} , m/e = 265 (1%); $[M-H_{2}O]^{+}$, 245 (5%); $[M-CH_{2}OH]^{+}$, 234 (100%); $[M-CH_{2}H_{5}]^{+}$, 220 (8%)
<u>5a</u>	51	135 - 140		M ⁺ , m/e = 297 (3%); [M-H ₂ Ol ⁺ , 279 (8%);; [M-CH ₂ OHl ⁺ , 266 (100%)
<u>6a</u>	70	Schmp. 93 - 94	(0.06 g in	M^{+} , m/e = 329 (<1%); $[M-H_{2}O]^{+}$, 311 (12%); $[M-CH_{2}OH]^{+}$, 298 (100%)

a) Reaktionsbedingungen; 4a, 16 h bei 50 °C ohne Solvens; 5a, 6a, 16 h in siedendem THF

b) Luftbadtemperatur in der Kugelrohrdestillationsapparatur

c) Weitere Fragmente: $\underline{4a}$: [OP(OEt) $_2$ C $_2$ H $_4$] ‡ , 165 (62%); [OP(OEt) $_2$ J ‡ , 137 (34%); $\underline{5a}$: [H $_5$ C $_6$ P(OEt)OJ ‡ , 169 (22%); [H $_5$ C $_6$ P(O)OHJ ‡ , 141 (34%).

Die spektralen Daten von $\underline{4a}$ – $\underline{6a}$ bestätigen eindeutig, daß die Addition an der H-N<und nicht an der -CH₂OH-Gruppe stattgefunden hat; die basenkatalysierte Addition von Alkoholen an $\underline{1}$ – $\underline{3}$, über deren präparative Aspekte von uns berichtet wurde $^{6)}$, ist gegenüber der Addition von Aminen (mit pK_B-Werten < 3) benachteiligt. Weitere Untersuchungen müssen klären, ob die Adduktbildung mit den HO- bzw. HN-Nucleophilen durch eine mit den pK_B-Werten der Nucleophile korrelierbare Reversibilität bzw. Irreversibilität der Addition gesteuert wird.

Die nicht durch die P=O-Bindung aktivierte Addition von Nucleophilen an <u>Vinylphosphine</u> selbst ist ebenfalls möglich, sie diente bislang insbesondere zur Synthese von di-, tri- und tetratertiären Phosphinen durch basenkatalysierte Addition von primären und sekundären Phosphinen 7)

Wir konnten zeigen, daß im Gegensatz zur basenkatalysierten Addition von Alkoholen die basenkatalysierte Michael-artige Addition von sekundären (und primären, siehe unten) Aminen an Diphenyl-vinylphosphin $\underline{7}$ in siedendem THF in Gegenwart kat. Mengen n-BuLi zu den ß(Amino)ethyl-phosphinen 8 möglich ist:

$$\begin{array}{c} \text{H}_5\text{C}_6 \\ \text{H}_5\text{C}_6 \end{array} \begin{array}{c} \text{P-CH=CH}_2 + \text{H-N} \\ \text{7} \end{array} \begin{array}{c} \text{R}^1 \\ \text{R}^2 \end{array} \begin{array}{c} \text{H}_5\text{C}_6 \\ \text{H}_5\text{C}_6 \end{array} \begin{array}{c} \text{P-CH}_2\text{CH}_2 - \text{N} \\ \text{R}^2 \end{array}$$

Mit den optisch aktiven Aminen (\pm)-Methyl-[1-phenyl-ethyl]-amin ($[\alpha]^{25} = -74.7^{\circ}$ bzw. $+72.4^{\circ}$ Substanz) und (-)N-Ethyl-N-[3-pinanmethyl]-amin $[\alpha]^{25}_{D} = -53.9^{\circ}$, c = 0.062 g/10 ml CHCl₃) werden die optisch aktiven Phosphine 8a - 8c erhalten.

Ver	$-N \Big\backslash_{R^2}^{R^1}$	Ausb.	[α] _D ²⁵	MS (CH5, 70 eV) (rel. Int.)
<u>8a</u>	CH ₃ (-) CH(C ₆ H ₅)CH ₃	59	-21.5° (0.129 g/10 ml CHCl ₃)	$M^{+}, m/e = 347 (14\%); [(C_{6}H_{5})P-CH_{2}CH_{2}]^{+}, 290 (4\%); [(C_{6}H_{5})_{3}]^{+}; \\ 262 (18\%), [M-C_{6}H_{5}CHCH_{3}]^{+}, 242 (16\%), \\ [M-(C_{6}H_{5})_{2}P-CH_{2}]^{+}, 148 (100\%)$
<u>8b</u>	-N (+) CHIC6H5HCH3	64	+28.1° (0.067 g/10 ml CHCl ₃)	
<u>8c</u>	Me Me H H Et	44	-40.2° (0.031 g/10 ml CHCl ₃)	M^{+} , m/e = 407 (2%); $[M-C_{10}H_{17}]^{+}$ 270 (100%); $[(C_{6}H_{5})_{2}PH]^{+}$, 186 (28%); $H_{5}C_{6}P^{+}$, 185 (35%)

Primäre optisch aktive Amine, z.B. L(-)-1-Phenyl-ethylamin ($[\alpha]_D^{25}$ = -36.9°, unverdunnt, d= 0.05) und (-)-3-Pinanmethylamin ($[\alpha]_{D}^{25} = -51.23^{\circ}$ (0.128 g/10 ml CHCl₂) reagieren n-BuLi-katalysiert in siedendem THF (Rkt.zeit 16h) mit zwei Mol 7 zu den ditertiären Phosphinen 9:

$$(H_5C_6)_2 P - CH_2CH_2$$
 $9a$, $R = CH - CH_3$
 $(H_5C_6)_2 P - CH_2CH_2$
 $9b$, $R = CH - CH_3$

 $\underline{9a}$, Ausb. 74%, farblose Kristalle, Schmp. 63-65 °C (aus Benzol/Petrolether), $[\alpha]_D^{25} = -6.44^{\circ}$ (0.053 g/10 ml CHCl $_3$); \underline{MS} (70 eV); \underline{M}^{\dagger} , $\underline{m}/e = 545$ (3%); $[H_5C_6CH(CH_3)NCH_2]^{\dagger}$, 398 (88%); $[M-P(C_6H_5)_2]^+$, 360 (57%); $[M-P(C_6H_5)_2]^{\frac{1}{2}}$, 346 (32%); $(C_6H_5)_3P^{\frac{1}{2}}$, 262 (67%); $P(C_6H_5)_2^+$, 185 (100%).

9b, Ausb. 39%, farblose Kristalle, Schmp. 78-79 °C (aus Essigester/Petrolether), 185 (100%).

Obwohl sich die ß(Amino)ethyl-diphenylphosphinoxide 6 mit Silikochloroform zu den Phosphinen reduzieren lassen, stellt die direkte Addition von Aminen an 7 wegen der größeren Palette additionsfähiger Amine den allgemeinen Weg zu den Phosphinen 8 (und 9) dar.

Über die Untersuchungen zur asymmetrischen Synthese mit Hilfe von übergangsmetallkomplexen mit den optisch aktiven Phosphinen 8 und 9 als Co-Katalysatoren wird gesondert berichtet.

LITERATURVERZEICHNIS

- 1) K. Issleib und R. Rieschel, Chem.Ber. $\underline{98}$, 2086 (1965). 2) A. Burger und W. Shelver, J.Med.Chem. $\underline{4}$ (2), 225 (1961). 3) A.N. Pudovik und R.G. Kusovleva, Z. Obshch. Khim. $\underline{33}$, 2755 (1963).
- A.N. Pudovik, Uzb. Khim. Zh. 23, 547 (1954).

 4) M.I. Kabachnik, E.N. Tsvetkov und Ch. Zhun-Yui, Z. Obshch. Khim. 32, (10), 3340 (1962); M.I. Kabachnik, T. Ya Medved, Yu. M. Polikarpov und K.S. Yudina, Jzv. Akad. Nauk SSSR, Ser. Khim. 9, 1584 (1962).
- 5) O. Vogl und M. Pöhm, Monatsh. Chem. 83, 541 (1952).
- 6) G. Märkl und B. Merkl, Tetrahedron Lett., im Druck.
- 7) R.B. King und P.N. Kapoor, J.Amer.Chem.Soc. 91, 5191 (1969), 93, 4158 (1971); R.B. King und W.F. Master, ebenda 99, 4000 (1977). 8) (-)-3-Pinanmethylamin.HCl ist käuflich bei der Fa. Ega-Chemie,
- Steinheim.